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Phase change of a block copolymer molecule 

S F Edwards 
Cavendish Laboratory, Cambridge University, Free School Lane, Cambridge, UK 

Received 13 July 1973 

Abstract. Polymer molecules can be so large that they may individually be considered as  
systems amenable to the methods of statistical mechanics. On this basis the configurational 
statistics of a block copolymer is considered, the polymer being of the form (A-A-A . , . -A-)- 
(B-B . . . -B) where the AA, BB and AB interactions are different. The mathematics becomes 
very easy in the special case of potentials VAA = V,, = - V,,, and it is shown that when 
VAA( = VBB) is attractive, V,, repulsive a phase change can take place in the structure of the 
molecule. For short molecules (or weak V )  the structure is that of a random flight with small 
local fluctuations. At a critical length (or critical V )  the molecule takes up a statistical dumb- 
bell configuration which becomes more pronounced with increasing length (or increasing V ) .  
The theory is developed at the equivalent of a mean field theory level of accuracy. The 
equations are discussed for the general case V,, # V,, # V,,, but the solution is there 
hampered by the intervention of an excluded volume problem. 

1. Introduction 

The following problem was posed to  the author by Professor Benoit. Suppose one 
has a solution of a block copolymer molecule of the type A”A-BNB, where A and B 
can be rather different monomers, say a styrene and a butadiene. For very long chains 
one might expect, with suitable solvent and temperature, that one or both will condense. 
Certainly the degree of separation of glass-like and rubber-like constituents in a Kraton 
type material, ie the solid state of such block copolymers, is remarkable. In spite of 
the chemical bond between the two blocks, sharp surfaces appear separating spherical, 
rod-like, or planar regions, according to  conditions. The problem posed is to  find out 
whether a single block copolymer will undergo a phase change. Consider for simplicity 
always N ,  = N ,  = N ,  for i t  is easy but tiresome to look at the general case. Then for 
a small number of monomers, N ,  the dominant thing will be the entropy associated 
with the many configurations. Again for simplicity, freely-hinged chains will be assumed. 
However, the number of interactions possible will go up much faster than N if a non- 
uniform probability in space is taken up by the molecule. So providing the signs of 
the intermonomer forces are appropriate one can expect a critical N ,  to  exist at which 
the molecule will cease to  be a random flight, and take up a non-uniform configuration. 
The level of technique of this paper will be that of replacing the true configurational 
integrals by their averages, ie the spirit is that of a mean field theory, though it is more 
complicated than the mean field theories of magnetism or of the Van der Waals liquid. 
This is a dangerous thing to have faith in, because in some aspects the polymer is one 
dimensional, and one-dimensional mean field theories are false. However, this is due 
to the enhancement of fluctuations by the sparse phase space of one dimension, and in 
the present problem one really is in the three-dimensional world. Thus although the 
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phase change discovered here will not be treated exactly at  the critical point (as usual), 
i t  is believed that the effect is real and indeed portrayed with some accuracy. 

2. The self-consistent field method 

The forces present between the monomers making up the polymer chain will be repulsive 
at short distances, and attractive at long distances. Both types of forces are short- 
ranged compared with the end-to-end distance of the polymer or indeed of segments 
of it. Unless one is concerned with phenomerra involving the fine structure of the forces, 
for example crystallization, one need not treat these effects separately but define an 
effective or pseudopotential which incorporates both features. The pseudopotential 
is defined so that the interaction in statistical equilibrium between monomer n and 
monomer m will be exp( - V,,/kT) and V,, will have a short-range form 

K m  - - - o,,8(r, - r,). 
kT 

The value U, will be positive if attractive forces predominate and negative if the short- 
range force is strongest. Clearly U will be a function of temperature and its value is the 
concern of polymer solution theory. As far as the present work is concerned it will be 
taken as a given parameter. At this point we give an outline argument for the basic 
equation (2.1 l), whilst putting a formal derivation in an appendix. Now consider one 
particular monomer, labelled 1 say. The Boltzmann factor weighting its role in the 
problem will be exp[ +X, 0 , ~ 6 ( r ,  - r , ) ] .  The basic approximation will be to  replace the 
variable r ,  in this by the probability of finding r ,  at a particular point in space. Let the 
probability of finding the nth monomer at r be pn(r). The self-consistent field approxi- 
mation is to say that the Boltzmann factor for the Kth monomer is 

This approximation was introduced by the present author to  study the excluded volume 
problem (Edwards 1965, 1966, also Freed 1971) and has recently been successfully 
applied to interfacial problems by Helfand and Tagami (1972). I t  is convenient to think 
of the label n replaced by a continuous variable s, ie r ,  + r(s). If the number of con- 
figurations of a force-free chain between s‘ and s when r(s’) = r ‘  and r(s) = r is called 
Go(r, U’; sj s’), then Go satisfies the diffusion equation 

(2.4) 

The number of configurations will be modified by the Boltzmann factor, and by changing 
n to n +  1 one sees a change Z,, u,,~+ ,pn(rK+ ,), so moving to the continuous notation a 
factor 
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ie alas now brings down an extra factor u(s, s’)p,.(r) ds’, ie 

( E - i V 2 - J  u(s, sl)ps,(r) ds, G(r, r‘; s, s’) = 6(r - rf)6(s - s‘). 1 (2.6) 

At this point the particular model is chosen of an AB block copolymer with monomers 
1 . . . N being A’s, N + 1 . . . 2 N  being B’s, and 

s, s’ < N 

s, s’ > N 
u(s, s’) = v 

It is convenient to take the join of the A and B blocks as the origin and define 

GA(r9 s) as G(ro, so) 

Gdr,  S) as WO, so) 

O < s < N  

2N > s > 0. 
and 

and finally the densities 

The diffusion equation is now 

which is the basic equation of this paper. 
Some further simplification can now be obtained by defining 

and 

4(S)  = GA(r, S) d3r = GB(r, s) d3r s 
by symmetry, so that the mean probability 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
G p = -  
4 ’  
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and usefully one can also define 

F Q = -  
4' 

The basic equations can be rewritten as 
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(2.15) 

(2.16) 

(2.17) 

or in integral form 

If now the equation for P is integrated .over r ,  since 

God3r = I i 
one gets 

Hence d must be a constant with the value 

1 
1 - U  J p2(r )  d3r' $ =  

(2.19) 

(2.20) 

since J Q ( r l ,  sl) ds, = p(r l ) .  This greatly simplifies the analysis leaving 

Q ( ~ , S ) - - U  J Go(r,r,;s,sl)p(r,)P(r,,s,)d3rl ds, = 0. 

There is one trivial solution, 

Q = 0, p = 0, P = Po, G = G o .  (2.22) 

The question is : is there another solution? 



336 S F Edwards 

3. The phase change 

I t  will now be shown that when u(LI)’” exceeds a numerical constant a, there is another 
solution and this solution represents a lower free energy than the random flight solution 
above. To see this firstly in general terms, the problem can be simplified by guessing 
the forms of Q and p within a scale factor and studying the scale factor. The boundary 
condition Q(r, 0) = 0, p(0) = 0 shows that if the second solution exists it must have at 
least a plane of antisymmetry, ie it will look something like pxPo where the plane of 
antisymmetry is chosen to  be the y: z plane without loss of generality, and p is a mag- 
nitude. To reduce (2.22) to  an equation for p alone, one may note that 

where p = j” pz d3r. Hence 

G , ~ Q  + G,( 1 - u p 2 p )  

and 
r i r  \ 

(3.2) 

J \ J  I 

Substituting the trial p x P ,  for Q and p and multiplying (3.3) by xPo and integrating 

(3.4) 

over all r ,  s yields 

p - up[vp% + y( 1 - up’fl)] = 0 
where 

p3c = j GopG0pQ 

and 

Y = J GoPG,. 

(3.5) 

The three quantities E, y, p are functions of L,  I alone. The solution of (3.4) is either 
p = O o r  

1 - u[upZr + y( 1 - upzp)] = 0. 
Thus 

(3.7) 

The distributions Q, p are of course real, so p must be real, which implies that yu > 1 
for the second solution to be possible, it being possible to  show that p y  > E by the 
Schwarz inequality. The critical value comes at 1 = yu  when Q , p  are still zero and 
P is Po. At this point y can be evaluated and is a numerical constant times (LI)”’, ie 

or 
u(L1)”Z = U P ,  

N o 2  = c i 2 1 2 .  
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With this introduction a more rigorous treatment can be given. for the critical point 
will arise when, putting P = Po,  a solution for Q, p just becomes possible, ie 

Q ( r ,  s ) - U  s Go(r, r1 ; s, sl)p(rl)Go(r,, s1)d3r ,  ds, = 0 (3.9) 

has a solution with p(0 )  = 0. Equation (3.9) can be written in the differential form 

( i - i V z ) Q ( r ,  s)-up(r)GO(r,  s) = 0. (3.10) 

This can be integrated from 0 to L to give 

where 

g o ( r )  = 1 Go(r, s) ds = 
r 

(3.12) 

But Q(r, L )  is a very small quantity and can be safely ignored, so the problem is to find 
when the equation 

(3.13) 

has a solution with p(0) = 0 and E = 0. The equation is written this way in analogy 
with the Schrodinger equation where E is the eigenvalue and ugo(r)  the potential. 
The lowest eigenvalue with p(0)  = 0 will be the p state p = cos 8o(lrl), so the problem 
is to discover the values of u,L  for which the first p state emerges. The ‘potential’ 
ug,(r) looks like ujr at the origin and is experimentally small when r z  > LI. Without 
doing a detailed calculation it is clear on dimensional grounds that the condition is as 
above uzL = a2I3, and it is well known from studies of this kind of equation that with 
a quite regular function vg,(r) appearing, the p state does indeed emerge. Detailed 
calculations can readily be done by say the Rayleigh-Ritz method, but obviously U is 
of order unity. 

Now the pseudopotential will vanish at the temperature where the attractive potential 
just counterbalances the entropy due to short-range repulsions, the 8 temperature of 
Flory. At this temperature the critical length is infinite. In general near T = 8 one has, 
since 

o(e) = o 
U ( T )  = u(e+T-e) = u ( e ) + ( ~ - e ) u ’ +  

[ ~ ’ ( T - ~ ) I ~ L  = 2 1 3 .  

Therefore near T = 8 

Thus as T -+ 8, L + L,  where 

(3.14) 

One can expect that a more elaborate theory will give some slightly different power, 
following recent developments in the theory of critical phenomena, where mean field 
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theories have been shown to give powers which, though not rigorously correct, are 
reasonably near the truth. 

If the length becomes much longer than L, or U much larger, one can reach a point 
where 4 --* 0 and the polymer collapses into an absurd kind of ‘dipole’ near r = 0. 
This is of course due to an approximation of using a pseudopotential which is now 
attractive. A return to the realistic force with long- and short-range components will 
mean physical sense being maintained, but of course the real predominance of the 
attractive parts will lead to crystallization of the two blocks separately, touching at 
r = 0. The mathematics of this paper is inadequate to deal with that problem. 

4. The general case 

The case chosen was so chosen for simplicity. It would be surprising to find a system 
where uAA = uBB = -uAB and in general the diffusion-mean field equation becomes 
a matrix equation. This matrix of equations will not have the elegant properties of the 
system above, and it will take the form 

One can at least keep the boundary condition p(0) = 0 if one defines p, G, F, P, Q as 
before, but in addition introduces 

= $(PA + PB). (4.2) 

Then the forms are 

V2+Cl lp+Cl2V G = 6 1 a i  

If F = p = 0, one still has the non-linear problem 

[z-;V2+C12q)Gl a i  = 6. 

(4.3) 

(4.4) 

which to the self-consistent field equation of the excluded volume problem as originally 
derived by Edwards (1965, 1966) (see also Freed 1971). The equation for the critical 
field is still (3.9), but with the GI of (4.4) used in it instead of Go. Let us suppose all the 

are of the same order of magnitude U. If the excluded volume mean square radius 
of the polymer is taken to be L1+W, then the critical equation becomes 

UL’ + t v a  = p ,  (4.5) 

in particular the self-consistent equation (4.4) leads to u215L6’512/5 so that 

(4.6) , ( , 2 / 5 ~ 6 / 5 1 2 / 5  112 - 12. ) 
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Thus u6/5L3/5  = l9ls x constant and as before 

1 
( T - 8)2 ’ L,  a - (4.7) 

But if, however, one introduces U, for the excluded volume and vi for the coefficient of q, 

u , u l i 5 ~ 3 / 5  l e  - [9i5. (4.8) 

Thus the peculiar form 

(4.9) 

results. 
It must be emphasized that solving (4.4) is much more difficult than solving (3.9). 

5. Conclusion 

I t  appears that in suitable circumstances block copolymer molecules can undergo 
phase changes. The present work prompts the idea that the solid state of such polymers 
might be tackled by similar methods and the author hopes to return to this in a later 
paper. 
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Appendix 

The exact form for the entire distribution can be written 

where the polymer is designated R(s) and the interaction V which may be infinite in 
hard-core repulsions. If  the two segments are designated L, 0 and 0, L ,  we have 
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If now the pseudopotential is substituted for V / k T  and the self-consistent fields 
introduced, ie 

~ ( R A ( ~ ~ ) - R A ( ~ z ) )  = J d3rd(R,(s,)-r)6(r-RA(s,) ds1 ds, 

= d3r6(RA(s,)-r)P(r, s,) ds, 

= J dRA(s1), s2) ds2 

= p(RA(s 1)). (A.3) 

The Wiener integral is now markovian and can be considered taken up to s rather than 
L, and the differential equations follow in the normal way. 
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